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Practical prediction of structural vibrations due to a turbulent boundary layer
currently depends on empirical representations of the unsteady wall pressures.
Improvements in these representations would be greatly facilitated if a simple,
physically based model were available to test ad hoc assumptions and provide rigorous
interpolation of experimental data. A possible candidate is the attached-eddy model,
developed from Townsend’s initial ideas by Perry and co-workers in the context of
turbulence velocity spectra. This approach employs the superposition of contributions
from individual ‘eddies’, of varying size, to yield its predictions. It is shown here that
the same methodology can be applied for wall pressures, once the field due to an
eddy has been obtained via solution of the governing Poisson equation. Comparisons
with large-eddy simulation and experimental data, spanning a two-decade Reynolds
number range, show remarkably good agreement, given the simplicity of the model. It
is concluded that this approach has the potential to provide useful physical insight and,
subject to its extension to a time-resolved form, improvements to existing empirical
formulations.

1. Introduction
The fluctuating wall pressures underneath a turbulent boundary layer are of interest

both as a fundamental physical feature and for their practical implications as a cause
of structural vibration (Blake 1986). Direct computation of a turbulent-boundary-
layer flow at the Reynolds numbers of technological interest remains out of the
question. Vibration predictions thus rely on empirical models of the pressure field
(see, e.g. Graham 1997 and the references therein). Inevitably, such models have
arbitrary features, due to the incompleteness and uncertainty in the measurements on
which they are based. A simple, physically based model for the wall pressures would
allow these features to be examined, as well as providing useful insight. Currently no
such model exists.

For boundary-layer velocity spectra, however, the situation is different. Here, Perry
and co-workers have developed the ‘attached-eddy model’, on the basis of ideas
initially introduced by Townsend (1976). Townsend proposed that unsteady motions
in the logarithmic region of a turbulent boundary layer arise from an ensemble of
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self-similar eddies, which may be regarded as ‘attached’ to the wall in the sense that
their length scale, λ say, is proportional to distance from the wall. Their velocity scale
is uτ , the skin-friction velocity.

Perry & Chong (1982) took this viewpoint and added the insight that the proposed
eddies must, in the mean, be responsible for the steady velocity component. This
allowed them to deduce the dependence of the eddy distribution’s probability density
function (∼λ−1) and the number of eddies per unit area (∼λ−2). They suggested that
the latter quadratic decrease could be explained by a hierarchical model, whereby
eddies grew in size, then either paired or died. They also, however, noted that this
viewpoint was inconsistent with their kinematical modelling, which showed that
growth in an individual eddy’s height was accompanied by a decrease in its breadth;
the postulated circulation-doubling pairing does not provide a means of regaining the
original eddy shape. Finally, they raised the possibility that attached eddies persist
outside the logarithmic layer into the ‘defect-law’ region.

Perry, Henbest & Chong (1986) developed the model further, considering a range
of candidate eddy shapes and showing how the probability density function could
be weighted so that geometrically similar attached eddies could account for the
logarithmic and defect-law velocity profiles. They also calculated the turbulence
velocity spectra that would be expected on the basis of the postulated eddy
distribution and found good agreement with measurements taken in zero-pressure-
gradient boundary layers. Similar comparisons by Nickels et al. (2007), based on more
recent data, also provide strong support for the attached-eddy viewpoint.

When applied to adverse-pressure-gradient and non-equilibrium boundary layers,
however, the model was less successful. This observation stimulated the development
of an extension, the ‘wall-wake’ form (Perry & Marusic 1995; Marusic & Perry 1995),
which includes an additional population of detached eddies towards the edge of
the boundary layer. Their influence, relative to that of the attached eddies, becomes
noticeable high up in zero-pressure-gradient boundary layers, and can dominate for
adverse-pressure-gradient and/or non-equilibrium conditions.

Plausible empirical support for the attached-eddy model came initially from smoke-
flow-visualization experiments carried out by Head & Bandyopadhyay (1981). More
recently, the advent of particle image velocimetry has enabled field measurements
which, when carefully analysed, provide convincing evidence of the postulated flow
structures (Adrian, Meinhart & Tomkins 2000; Hutchins, Hambleton & Marusic 2005;
Hambleton, Hutchins & Marusic 2006). These studies also show that the eddies tend
to occur in streamwise-oriented ‘packets’, associated with which are long ‘streaks’
of low-momentum fluid. Such streaks can extend further than 20 boundary-layer
thicknesses (Hutchins & Marusic 2007), and modification of the attached-eddy model
to take account of them improves its predictions of long-range correlation levels
(Marusic 2001).

A more complete survey of current thinking on the structure of turbulent-boundary-
layer flows can be found in the review paper by Adrian (2007). A recent direct-
numerical-simulation study, by Wu & Moin (2009), is also relevant, in that it provides
the first computational evidence for the presence of attached eddies in a fully turbulent
regime.

Attempts to apply structure-based modelling to the wall-pressure spectrum have
been rare; we have only found the work of Townsend (1976) and Witting (1986).
Townsend considered a Gaussian eddy, of a single scale only, and restricted himself to
a qualitative topological comparison with experimental results for the two-dimensional
spatial correlation field (Bull 1967). Witting (1986) appears not to have been familiar
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with the attached-eddy hypothesis, and instead derived a formulation based on an
ensemble of dipoles, distributed over a range of heights in the boundary layer.
This approach does not allow the probability density function of the distribution to
be determined via the mean velocity profile, and Witting simply assumed it to be
uniform. Nonetheless, like Townsend, he found good qualitative agreement with Bull’s
correlation measurements, albeit with significantly more rapid decay away from the
central peak.

In summary, wall-pressure field modelling based on partially developed ‘coherent
structure’ ideas has produced encouraging results, whereas an established form of
these ideas, the attached-eddy model, has proved successful with regard to velocity
spectra. The application of the attached-eddy model to the wall pressures is thus
clearly worth pursuing, and is the topic of this paper. We begin, in § 2, by calculating
the wall-pressure field underneath a single, rectangular eddy. The scale integral, which
expresses the wall spectrum in terms of weighted contributions from eddies of all sizes,
is formulated in § 3. Finally, the predictions of the model are tested in § 4, against
numerical and experimental data spanning a range of two decades in Reynolds
number.

2. Surface pressures below a horseshoe vortex
As in the application of the attached-eddy model to velocity spectra, the overall

wall-pressure spectrum will be formed from a superposition of individual eddy
contributions. However, unlike the velocities, the pressures due to an eddy do not
follow straightforwardly as soon as it is defined. Instead, it is necessary to solve the
equations of motion for the fluid.

A further complication is the existence of two schools of thought on the single-eddy
analysis. Dhanak & Dowling (1995) calculate the pressure field on the basis that the
fluid surrounding the eddy is stationary at infinity. The pressures are then quadratic
functions of the eddy vorticity and velocity fields. This nonlinearity means that the
planned superposition of eddy pressure contributions is not strictly rigorous, even
given the standard assumption of uncorrelated eddies. In practice, one might argue
that it was nonetheless acceptable, if the mean velocity associated with other eddies
were zero. This, however, is not the case; the attached-eddy model explicitly regards
the mean contribution of all eddies as giving rise to the boundary-layer velocity
profile.

The alternative approach is set out by Townsend (1976). Here the single-eddy
pressure field is that due to the superposition of the eddy and the mean velocity
profile. It is further assumed that the eddy velocity gradients are small in comparison
with the mean shear, so the ‘sources’ in the Poisson equation for pressure may
be linearized. This viewpoint regards the (mean) interaction of a given eddy with
its peers as dominant; the quadratic ‘self ’ pressures considered by Dhanak &
Dowling (1995) are neglected, along with the fluctuating interaction components.
As a corollary, it implies that the superposition of individual eddy pressure fields is
legitimate.

The validity of Townsend’s viewpoint depends on the size of the typical eddy
velocities in comparison to the mean boundary-layer velocity. If, as he suggested, the
former scale on the friction velocity, uτ (= U∞

√
cf /2, in which U∞ is the free-stream

velocity and cf is the wall skin-friction coefficient), then one expects it to be applicable
for the high-Reynolds-number boundary layers of interest here. For this reason, it is
the approach that we adopt.
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Figure 1. The horseshoe-vortex eddy representation, and its image in the x–y plane. Each
straight-line element has circulation Γ , in the sense indicated by the double-headed arrows,
and is labelled by a circled number.

In the following section, we define the eddy and give the Poisson equation for the
pressure. In § 2.2 we present a formal Green’s function solution, in terms of the mean
shear and the eddy velocities. Explicit expressions for the latter are given in § 2.3; the
mean shear is discussed in § 2.4. The numerical method used to evaluate the Green’s
function integral is then described in § 2.5, with sample results presented in § 2.6.
Finally, the associated wavenumber spectra are considered in § 2.7.

2.1. Formulation

Following Perry et al. (1986), we specify our representative eddy in terms of its
vorticity field. This consists of two straight ‘legs’, of length L and inclined at 45◦ to
the mean flow, and a straight ‘head’, of length λ, perpendicular to the flow (figure 1).
Each element of this ‘horseshoe vortex’ has uniform vorticity concentrated in a core
of radius rc, with corresponding circulation Γ . The associated flow vector is denoted
by u. The overall velocity field consists of the superposition of u and the mean
boundary-layer flow.

The origin of coordinates is located midway between the intersections of the
horseshoe legs with the wall. The axes are chosen so that x is the streamwise direction
and z is normal to the wall. The overall velocity vector is thus (U + u)ex + vey + wez,
where U (z) is the boundary-layer mean profile, (u, v, w) are the components of
u(x, y, z) and (ex, ey, ez) are the unit axis vectors.
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The boundary layers that we seek to model here are high in Reynolds number,
but still relatively low in Mach number. We therefore neglect the effects of viscosity
and compressibility. The latter assumption is uncontentious, but the former could
justifiably be questioned, and will be discussed further during the development of the
analysis. Once accepted, they imply that the flow is described by the incompressible
Euler equations, which take the form

∂u
∂t

+ (U ex + u) · ∇(U ex + u) = −∇p

ρ
,

in which p is the flow pressure, ρ its density, and t represents time. The governing
(Poisson) equation for the pressure field follows by taking the divergence; under the
Townsend (1976) assumption that the mean shear dominates, it becomes

∇2p = −2ρ
dU

dz

∂w

∂x
. (2.1)

This equation is to be solved subject to the requirements that the pressure vanishes
far from the eddy, and obeys the wall boundary condition:

∂p

∂z
= 0. (2.2)

Note that the inclusion of viscous effects would render this gradient non-zero, but the
Poisson equation would still apply.

2.2. Solution for the surface pressures

Following Dhanak & Dowling (1995), we solve (2.1) via a Green’s function approach.
The required Green’s function satisfies

∇′2G(x ′; x) = δ(x ′ − x) (2.3)

and the boundary condition

∂G

∂z′

∣∣∣∣
z′=0

= 0. (2.4)

(Here x = (x, y, z) and x ′ = (x ′, y ′, z′) are position vectors in the flow half-space,
δ(x ′ − x) is a three-dimensional Dirac delta function, and the dash superscript on the
‘del’ operator means that its derivatives are with respect to the components of x ′.)
The solution to (2.3) and (2.4) that vanishes at infinity is

G(x ′; x) = − 1

4π

(
1

|x ′ − x| +
1

|x ′ − xI |

)
,

where xI = (x, y, −z) is the image of x associated with the wall plane. The pressure
field may now be found from Green’s theorem, which states that∫

V

[
p(x ′)∇′2G(x ′; x) − G(x ′; x)∇′2p(x ′)

]
d3x ′

=

∫
S

[
p(x ′)∇′G(x ′; x) − G(x ′; x)∇′p(x ′)

]
d2x ′, (2.5)

where S is the surface bounding the domain V . On applying (2.5) to the half-space
z′ > 0, and employing (2.1)–(2.4), we have

p(x) = −2ρ

∫
z′>0

G(x ′; x)
dU (z′)

dz′
∂w(x ′)

∂x ′ d3x ′.
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Had we included viscosity in our governing equations, this volume integral would
have been supplemented by a surface integral involving the wall-normal pressure
gradient. Howe (1989) considered the significance of this term and concluded that it
only becomes relevant at length scales so large that compressibility effects are also
important. Thus, in our context, its neglect is justifiable.

We conclude by restricting attention to points xw = (x, y, 0) on the wall and
integrating by parts, to obtain

p(xw) =
ρ

π

∫
z′>0

x ′ − x

|x ′ − xw|3
dU (z′)

dz′ w(x ′) d3x ′. (2.6)

The motivation for the integration by parts is to obtain an integral which is more
amenable to numerical evaluation. This exercise will be considered shortly; first,
however, we must specify the integrand components dU/dz′ and w.

2.3. The eddy velocity field

In principle, once the eddy’s vorticity field ω is defined, the associated velocities follow
straightforwardly from the Biot–Savart integral. In practice, some difficulties arise.
If the horseshoe elements in figure 1 are represented as line vortices, the velocity
is singular at the corners. Some representation of the core structure is therefore
required, but even the simplest forms one might consider do not admit exact analytical
solutions. A plausible heuristic approach for slender elements is to de-singularize the
Biot–Savart expression for the line element by multiplication with a modifying factor
which corresponds to the exact Rankine core result for the infinite-length case. In
Appendix A, we show that, subject to a slight correction, this method is asymptotically
valid away from the ends of the element. Furthermore, we find that errors resulting
from application of the corrected form at the ends as well are not great; in particular,
they are likely to be negligible in comparison with other uncertainties, e.g. eddy
geometry and core structure. On applying this approach to the eddy of figure 1, we
obtain

w(x, y, z) = w1 + w2 + w3 + w4 + w5 + w6,

where the components w1–w6 (arising, respectively, from the straight elements 1–3
and their images 4–6) are given in Appendix A.

2.4. The boundary-layer profile

The integral for the wall pressures, (2.6), requires the boundary-layer velocity gradient
over the entire range in which both it and the wall-normal component of the eddy
velocity are non-negligible. Therefore, given the range of eddy sizes postulated by the
attached-eddy model, we must specify U (z) throughout the boundary layer. In the
log-law region, this is straightforward; there is broad agreement on the form of U (z),
and little variation in suggested values of its coefficients. Here we follow Nickels et al.
(2007) and take

U

uτ

=
1

κ
log z+ + A, (2.7)

with κ = 0.41 and A= 5.0. The dimensionless variable z+ is the coordinate z expressed
in ‘wall units’, i.e. z+ = uτz/ν, where ν is the fluid’s kinematic viscosity.

Below the logarithmic layer, the velocity profile is expected to be universal (when
expressed in wall variables), but its form is less well established. Very near the wall,
one expects U/uτ = z+ (Young 1989). A more general empirical curve, formulated by
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Figure 2. Comparison of expressions for the wall-region velocity gradient. The solid line (—),
current (2.9); the dashed line (– –), Bull (2.8). Above z+ =27.45 and 33.2 the curves follow the
log law u−1

τ dU/dz+ = 1/κz+.

Bull (1969), is

1

uτ

dU

dz+
=

[
1 +

z+

4
+

1

2

(
z+

4

)2

+
1

1300

(
z+

4

)6
]

e−z+/4, (2.8)

valid for z+ � 33.2. Here, for numerical reasons, we insist on the near-wall form
U/uτ = z+ for z+ � 2.8. We then take

1

uτ

dU

dz+
= 1 − z+ − 2.8

15.7
+ 4.68 × 10−4(z+ − 2.8)2.26, 2.8 < z+ < 27.45. (2.9)

The associated velocity profile is obviously continuous in value and gradient at
z+ =2.8. It is also continuous with (2.7) in value, gradient and second derivative
at z+ = 27.45. The derivation of this expression is explained in Appendix B. It is
compared with Bull’s form in figure 2.

Outside the logarithmic region the velocity profile is not expected to be universal.
However, Young (1989) reports that a number of authors have achieved good fits to
experimental data using expressions of the form

U

uτ

=
1

κ
log z+ + A +

B

Cπ

[
1 − cos

(
Cπ

z − z2

δ

)]
, (2.10)

where z2 is the point at which the switch from the log law takes place, and δ is
the boundary-layer thickness. This choice guarantees value and gradient continuity
at z = z2; the parameters B and C are set by the requirements that U =U∞ and
dU/dz = 0 at z = δ. In this work, we take z2 = 0.1δ throughout. Appropriate values
for B and C are given on a case-by-case basis in § 4.

2.5. Numerical evaluation of the surface pressure field

The integral for the wall pressure, (2.6), was calculated via a straightforward
quadrature on a Cartesian mesh, the contribution from each cell being taken as its
volume multiplied by the integrand value at its centre. For practical implementation,
this algorithm was split into a routine for the integral over x ′ and y ′, in which the
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velocity gradient does not appear, and a routine for the integral over z′. Numerical
difficulties arising from the integrable singularity at x ′ = xw were avoided by starting
the quadrature over z′ at a non-zero lower limit, chosen so that dU/dz′ was constant,
and w linear in z′, below this limit. The missing part of the integral could then be
evaluated analytically.

In each routine, the size of the cells was varied for numerical efficiency. For the
integral over x ′ and y ′, extra resolution was required at possible intersections between
the integration plane and the horseshoe vortex legs or head. In the z′ quadrature, the
smallest cells were next to the wall and around the vortex head.

Accuracy requirements were set at the upper of 1 % or 0.01, the latter applying to
the dimensionless pressure

p̃(xw) =
p(xw)

1

2
ρuτ

Γ

λ

.

Grid refinement and extension studies were carried out to ensure that these targets
were met. Note that, in particular, this entails an upper limit on z′ of four times the
head height (assuming this to be less than the boundary-layer thickness), confirming
the need for the defect-region velocity expression, (2.10), even for horseshoes with
heads in the logarithmic region.

Finally, in the course of developing the calculation, we investigated the variation
of the integrand contributions to p(xw) with z′. This is significant because our eddy
representation becomes questionable towards the feet, as the viscous sublayer is
approached. We found that the contributions from these heights are small, unless
xw itself is close to a foot. This observation, combined with our simple core model,
suggests that there is a measure of arbitrariness in the details of the pressures around
the feet. The large-scale structure of the field can, however, be regarded as robustly
predicted.

2.6. Sample results

The wall pressures specified by (2.6) depend not only on position but also on the
eddy parameters λ, L and rc. In this section, we explore these dependencies.

First, we express the integral for the wall pressures in terms of dimensionless
variables, viz.

p̃

(
x

λ
,
y

λ
,
L

λ
,
rc

λ
,
uτλ

ν

)
=

2

π

∫
z′>0

λ2 x ′ − x

|x ′ − xw|3

(
λ

uτ

dU

dz′

)
λw

Γ

d3x ′

λ3
.

The dimensionless eddy velocity field, λw/Γ , is a function of x ′/λ, L/λ and rc/λ,
whereas the mean shear term depends on z′/λ and uτλ/ν. Hence, unlike its velocity
field, the eddy’s wall pressures cannot, in principle, take a universal form depending
only on x/λ, y/λ, even if L/λ and rc/λ are assumed constant. This observation has
significant implications for our intended combination of contributions from eddies
over many scales, and we therefore need to investigate the dependence on uτλ/ν in
practice (figure 3). We also consider the influence of the remaining dimensionless
parameters, L/λ and rc/λ (figures 4 and 5). In all these cases, the boundary layer
is taken to have thickness δ = 3450ν/uτ and defect-region velocity-profile constants
B = 7.34, C = 1.231.

The essential conclusions from figures 3–5 are that the absolute size of the eddy
has remarkably little effect on the dimensionless pressures; the aspect ratio is more
important, and affects the large-scale topology of the pressure field; the influence of



A structure-based model for turbulent-boundary-layer wall pressures 451

7
(a)

6

–0.01

–0.1

–0.1
–0.1

–0.1–11
1 1

–1–1

0.01

0.
01

0.01
0.0

1

0.01
0.01

–
0
.0

1

–
0
.0

1

0.1
–0.01

–0.1

–0.1–11

0.01

0.
01

0.1

0.
1 0.
1–0.1

5

y/
λ

4

3

2

1

0
–5 0 5

7
(b)

6

5

4

3

2

1

0
–5 0 5

7
(c)

6

5

y/
λ

x/λ

4

3

2

1

0
–5 0 5

7
(d)

6

5

x/λ

4

3

2

1

0
–5 0 5

Figure 3. Eddy pressure field, p̃(x/λ, y/λ), for L/λ=
√

2, rc/λ= 0.05 and varying eddy size:
(a) uτλ/ν = 175; (b) uτλ/ν =350; (c) uτλ/ν =700; (d) uτλ/ν =1400. Lines: —, positive contour
levels; – . –, zero contour level; – –, negative contour levels.

the core size is limited to the regions around the feet of the eddy. The remainder of
this section describes the plots in more detail.

Figure 3 shows pressure-field contours for eddies with L/λ=
√

2, rc/λ= 0.05 and
uτλ/ν = 175, 350, 700, 1400, placing the heads at z = 0.05δ, 0.1δ (the top of our
logarithmic region), 0.2δ, 0.4δ, respectively. The first two fields are virtually identical,
whereas the latter pair exhibit slight increases in outer lobe magnitudes with eddy
size.

Figure 4 gives results for uτλ/ν =350, rc/λ= 0.05 and L/λ varying from 1 to 2
√

2.
Over this range, the main negative lobe grows, pushing the right-hand positive lobe
away from the origin. The left-hand positive lobe changes less; in fact its expansion
between L/λ=

√
2 and 2

√
2 may be ascribable purely to the associated change in

head height (to z = 700ν/uτ ; cf. figure 3c). Finally, a secondary positive lobe at the
foot grows significantly with increasing L/λ.

Core-size variations (from 0.025λ to 0.2λ) for the eddy with λ=350ν/uτ and
L =

√
2λ are shown in figure 5. Unsurprisingly, pressures distant from the eddy are

unaffected; a close inspection of the contours around the foot reveals that the local
peaks there are smoothed out as rc increases.

2.7. The wavenumber spectrum

The superposition of eddy contributions to wall pressures will be in terms of
wavenumber spectra. For this reason, we consider here the individual eddy spectrum,
|P̃ (k̃x, k̃y)|2, where P̃ (k̃x, k̃y) is the Fourier transform of the (dimensionless) pressure
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Figure 4. Eddy pressure field, p̃(x/λ, y/λ), for uτλ/ν =350, rc/λ= 0.05 and varying aspect

ratio: (a) L/λ= 1; (b) L/λ=
√

2; (c) L/λ= 2; (d ) L/λ= 2
√

2. Lines: —, positive contour levels;
– . –, zero contour level; – –, negative contour levels.

field:

P̃ (k̃x, k̃y) =

∫ ∞

−∞
p̃

(x

λ
,
y

λ

)
e−ik̃xx/λe−ik̃yy/λd

(x

λ

)
d

(y

λ

)
.

This quantity was estimated by applying a fast Fourier transform (FFT) algorithm
to the pressure-field data, zero-padded to the nearest power of 2. Satisfactory high-
wavenumber convergence in the spectrum was found with point spacing equal to the
minimum of rc and 0.05λ, corresponding to an upper (dimensionless) wavenumber
limit of 62.8 or greater. Sufficient wavenumber resolution was obtained with limits
of −8, 9 in x/λ and ±7 in y/λ. Because of the zero padding, these give the same
resolution in both k̃x and k̃y: 0.25.

Computational requirements were reduced in two ways. First, the symmetry of the
pressure field in y was exploited. Second, a fourfold, bi-cubic interpolation scheme
was used to provide the desired spatial resolution outside the region −1.2 <x/λ< 2.0,
y/λ< 1.6. Inside this region, each required value was calculated directly.

Figure 6 shows the result of the spectrum calculation for the eddy common to
figures 3–5, with uτλ/ν = 350, L/λ=

√
2 and rc/λ= 0.05. The main peak lies on the

k̃x axis, but is offset from the origin. The dependence on k̃y exhibits an oscillatory
sidelobe structure, due to ‘interference’ between the two leg contributions to the
pressure field.

In the previous section, we found that aspect-ratio variations affect the large-scale
topology of the pressure field, and core-size variations affect the small-scale topology;
these translate into influences on the low- and high-wavenumber regions, respectively,
of the spectrum. In particular, the spectra corresponding to figure 4 (aspect ratio) show
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Figure 5. Eddy pressure field, p̃(x/λ, y/λ), for uτλ/ν =350, L/λ=
√

2 and varying core size:
(a) rc/λ= 0.025; (b) rc/λ= 0.05; (c) rc/λ= 0.1; (d ) rc/λ= 0.2. Lines: —, positive contour levels;
– · –, zero contour level; – –, negative contour levels.

differences only for k̃x, k̃y < 5, with levels on the k̃x axis dropping as the streamwise
length scale of the pressure field stretches, while those corresponding to figure 5 (core
size) exhibit marked reductions in sidelobe levels with increasing rc.

3. The overall surface pressure field
We now show how the attached-eddy model may be applied to obtain an expression

for the wall-pressure spectrum in terms of an integral over contributions from eddies
of differing scales. The approach taken differs slightly from that of Perry and co-
workers by working throughout with the eddy ‘number density’ (the original Perry &
Chong 1982 derivation quickly moves to the probability-density-function description),
but is identical in principle. There are, however, two features of interest in our case.

The first has already been noted: it is not strictly possible to define a universal,
dimensionless, eddy pressure field that is independent of eddy scale. The second is
also a departure from self-similarity; it arises from the influence of eddies outside the
logarithmic region on the wall pressures. That these are significant can be deduced
from the narrow-band convection velocities reported for the wall-pressure field (Blake
1970), which typically range from around 0.83U∞ to 0.6U∞ over the frequency range
where they are measurable. If we assume that the convection velocity is representative
of the mean boundary-layer velocity at the eddy head, then the higher values certainly
correspond to contributions from defect-layer eddies. (For the boundary-layer profile
used in § 2.6, the mean velocity at z = 0.1δ is 0.67U∞, and it reaches 0.83U∞ at
z = 0.4δ.) For this region, we follow Perry et al. (1986) in representing the relevant
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eddies as still attached, but we do not assume that they are geometrically similar
to their smaller counterparts. Instead we take up an alternative suggestion made by
Perry & Chong (1982): that the departure from a logarithmic profile can be accounted
for by changes in eddy shape. This approach still leads to a ‘scale integral’, which is
derived in § 3.1. The modifications necessary to include defect-layer contributions are
discussed in § 3.2, and numerical evaluation of the integral is considered in § 3.3.

3.1. Superposition of the eddy contributions

To distinguish separate contributions, we introduce the nomenclature pe(x, y, λ) for
the individual-eddy pressure field discussed in § 2.2. Implicit in this description is an
assumption that the core radius, rc, and the leg length, L, are specified by the eddy
width, λ. This issue will be discussed in § 3.2.

Consider a distribution of eddies, represented by horseshoe vortices of a range of
sizes and locations. The linearity of the pressure formulation, (2.6), implies that the
wall pressure is the sum of individual contributions, i.e.

p(x, y) =
∑

m

pe(x − xm, y − ym, λm), (3.1)

in which xm, ym and λm specify the location and size of the mth horseshoe.
Our interest is in the spatial spectrum

S(kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
R(rx, ry)e

−ikxrx e−ikyry drx dry, (3.2)
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where R(rx, ry) is the ensemble-average pressure correlation function

R(rx, ry) = p(x, y)p(x + rx, y + ry).

This quantity cannot be directly extracted from our chosen representation of the
boundary layer; instead we work with an alternative expression for the spectrum,
which can be derived from its fundamental definition via generalized function theory,
viz.

(2π)2δ(k′
x − kx)δ(k

′
y − ky)S(kx, ky) = P (kx, ky)P ∗(k′

x, k
′
y), (3.3)

where δ( ) is the Dirac delta function, and P (kx, ky) is the Fourier transform of p(x, y),
defined in the same way as that for the spectrum, (3.2). On employing (3.1), it can be
written as

P (kx, ky) =
∑

m

Pe(kx, ky, λm)e−ikxxme−ikyym, (3.4)

where Pe(kx, ky, λm) is the transform of pe(x, y, λm). Our expression for the spectrum
therefore becomes

(2π)2δ(k′
x − kx)δ(k

′
y − ky)S(kx, ky) =

∑
m

Pe(kx, ky, λm)P ∗
e (k′

x, k
′
y, λm)ei(k′

x−kx )xmei(k′
y−ky )ym .

(3.5)

(Here one of the two summations over horseshoe contributions implied by (3.3) and
(3.4) has been eliminated by the ensemble average, on the assumption that eddies are
uncorrelated with one another. This is the standard approach; note, however, that it
precludes any representation of the arrangement of eddies in packets.)

The next step is to replace the summation over eddies with an integral, reflecting
the expected continuous distribution of sizes and locations. We define the number
density, ne(λ), such that the expected number of eddies in the size range λ1 � λ � λ2

is
∫ λ2

λ1
ne(λ) dλ, per unit of wall area. Then (3.5) becomes

(2π)2δ(k′
x − kx)δ(k

′
y − ky)S(kx, ky) =

∫ λmax

λmin

∫ ∞

−∞

∫ ∞

−∞
ne(λ)Pe(kx, ky, λ)

× P ∗
e (k′

x, k
′
y, λ)e

i(k′
x−kx )xmei(k′

y−ky )ym dxm dym dλ.

The integrations over xm and ym yield delta functions, which can be eliminated by
further integrations (of both sides) over k′

x and k′
y . The final result is

S(kx, ky) =

∫ λmax

λmin

ne(λ)|Pe(kx, ky, λ)|2 dλ, (3.6)

where λmin and λmax are the sizes of the smallest and largest horseshoes, respectively.
This is the scale integral for the wavenumber spectrum. As it is an average quantity, it
requires no assumption beyond that of uniform probability for the spatial arrangement
of our eddies. Their size distribution, however, must be specified, and this is the topic
of § 3.2.

Here, we conclude by stating the corresponding results for the one-dimensional
wavenumber spectra defined by

Sx(kx) =

∫ ∞

−∞
R(rx, 0)e−ikxrx drx,

Sy(ky) =

∫ ∞

−∞
R(0, ry)e

−ikyry dry.
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Figure 7. Notation for analysis linking eddy number density to streamwise velocity gradient.

A similar analysis to that above gives

Sx(kx) =

∫ λmax

λmin

∫ ∞

−∞
ne(λ)|Pex(kx, y, λ)|2 dy dλ

with

Pex(kx, y, λ) =

∫ ∞

−∞
pe(x, y, λ)e−ikxx dx.

The corresponding expression for Sy(ky) can be deduced via appropriate variable
exchanges.

3.2. The eddy distribution

Townsend’s attached-eddy hypothesis postulates a distribution of self-similar eddies
with velocity scale uτ . Perry and co-workers identified the horseshoe vortex as a
candidate eddy structure and showed that the average size distribution could be
inferred from the requirement that the eddies be responsible, in the mean, for the
boundary-layer velocity profile. Here we apply this insight to deduce the form of our
number-density function in, and then outside, the logarithmic region.

Consider the streamwise plane ABCD shown in figure 7. Under the usual boundary-
layer assumptions, the mean circulation around this region is, by definition, [U (z) −
U (z1)]Lx . This quantity arises from the heads of the horseshoe vortices that cut
the plane. To do so, a horseshoe of breadth λ must lie within a spanwise distance
λ/2 either side of the plane and have head height L/

√
2 between z1 and z. For

the latter condition to be fulfilled, we require Λz1 < λ<Λz, where Λ =
√

2λ/L is a
constant for our self-similar eddies. When this requirement is satisfied, the number
of horseshoes with breadth between λ and λ + dλ which cut the plane is ne(λ)dλLxλ,
each contributing circulation Γ (λ). Equating the overall circulation with the integral
of the horseshoe contributions then gives

U (z) − U (z1) =

∫ Λz

Λz1

ne(λ)Γ (λ)λ dλ, (3.7)

or
dU

dz
= Λ2zne(Λz)Γ (Λz). (3.8)

Now the assumed eddy scaling implies that Γ (λ) ∼ uτλ, so we require

ne(λ) =
Ne

λ3

(with Ne constant) if (3.8) is to reproduce the log law, dU/dz ∝ 1/z.



A structure-based model for turbulent-boundary-layer wall pressures 457

Such a form for the number density implies that the number of horseshoes in a
finite (percentage) range around a given scale reduces by a factor of four each time
that scale doubles. This led Perry & Chong (1982) to propose that, in the process of
growing to the larger scale, half the vortices ‘die’, and half ‘pair’, i.e. merge with similar
partners, leading to a doubling in eddy circulation. As the pairing vortices must, more-
or-less, line up with one another, we shall refer to this process as ‘streamwise pairing’.
Perry & Chong (1982) noted that this view, combined with horseshoe elongation
during growth, is inconsistent with the self-similarity assumption, but did not pursue
the matter. We suggest that the difficulty could be resolved by postulating a second,
‘spanwise’, pairing process instead of vortex ‘deaths’. Vortices pairing spanwise would
start side-by-side, and would join via cancellation of their adjacent legs. This process
would be circulation conserving, hence not contravening the required scaling, and
would provide a mechanism for spanwise growth.

Above the logarithmic region, we make the physically plausible assumption that the
joining and merging processes continue, but that the vortex stretching is increasingly
inhibited as the edge of the boundary layer is approached. This implies that the
number density and circulation depend on λ as previously, but that the horseshoes
are no longer geometrically similar, i.e. Λ is now a function of λ. In this case (3.7)
still holds, but

dU

dz
= (Λz)2ne(Λz)Γ (Λz)

[
1

z
+

1

Λ

dΛ

dz

]
.

Our defect region velocity profile, (2.10), is then matched when

log
Λ

Λ0

=
κB

Cπ

[
1 − cos

(
Cπ

z − z2

δ

)]
,

where Λ0 is the constant value of Λ applicable in the logarithmic region.
This definition of the eddy distribution satisfies our assumption that the leg length,

L, is a function of λ. However, we also required the core radius to be defined by
λ, and a form for this dependence is not easily obtainable from arguments a priori.
The most straightforward assumption is that rc is proportional to λ, and this is the
approach taken by Perry et al. (1986). It has no strong physical justification; although
one would expect core sizes to increase because of the postulated streamwise merging,
they would not necessarily remain proportional to λ, and in any case the stretching
process would oppose this tendency (for the legs, at least). However, any significant
departure from proportionality would imply the presence of another relevant length
scale, and this is not observed empirically. Alternatively, recall that it is the low-
amplitude, high-wavenumber regions of an eddy’s pressure spectrum that are affected
by rc, and these will only contribute significantly to the scale integral at a given
wavenumber, kx say, when there are no higher amplitude contributions arising from
the lower kxλ regions of smaller eddies’ spectra. On the basis of these arguments,
then, we fix rc at 0.05λ.

3.3. Numerical evaluation of the scale integral

We have already noted that the wall-pressure field is not self-similar. However, to
inform the following discussion, we consider first how the scale integral would be
evaluated if it were. In this case, the eddy pressure field could be expressed as

pe =
1

2
ρuτ

Γ

λ
p̃e

(x

λ
,
y

λ

)
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(cf. § 2.6), and its Fourier transform as

Pe =
1

2
ρuτΓ λP̃e(kxλ, kyλ),

where P̃e(k̃x, k̃y) is the Fourier transform of p̃e(x/λ, y/λ) with respect to its arguments.
Noting that Γ ∼ uτλ, the scale integral, (3.6), would then become

S(kx, ky) ∼
(

1

2
ρu2

τ

)2 ∫ λmax

λmin

λ|P̃e(kxλ, kyλ)|2 dλ. (3.9)

Thus, for any given (kx, ky), we would evaluate a line integral proceeding along a fixed

ratio of the dimensionless wavenumbers k̃x, k̃y in the ‘universal’ spectrum |P̃e(k̃x, k̃y)|2.
Crucially, the latter need only be evaluated once.

In the absence of self-similarity, however, we have to consider direct evaluation of
(3.6), which requires Pe(kx, ky, λ) to be computed for every value of λ in whichever
quadrature is chosen. This, unfortunately, turns out to be numerically prohibitive. We
must therefore assess the importance of departures from self-similarity.

As we have seen, such departures arise from two sources. The first is the contribution
of all regions of the boundary layer to the integral for eddy pressures, via the mean-
shear term dU/dz′, and the second is the variation in eddy aspect ratio required
outside the logarithmic region. The former, however, was found in § 2.6 to have a very
weak effect on the surface pressure field, and we therefore neglect it. This then implies
that the contribution to the scale integral from eddies in the logarithmic region can
be expressed in the universal form, (3.9).

The dependence of the surface pressures on aspect ratio is more important. The
variation of aspect ratio with scale is, however, rather gradual, compared to the other
components influencing the integrand: λ, kxλ and kyλ. We can therefore split the scale
range into a small number of contributions, within each of which the aspect ratio
may be considered fixed, and the required (dimensionless) spectrum universal. This
makes the problem numerically tractable.

The next consideration is the choice of limits for the scale integral. It is natural to
take the lower, λmin , as corresponding to the base of the logarithmic region (z+ = 27.45
here). This scale, however, is rather small at high Reynolds numbers, meaning that
it is difficult to resolve in either measurements or computations. The value 27.45
should therefore be regarded as a lower limit, only applicable in the absence of any
high-wavenumber filtering.

The upper limit for the scale integral is less easily defined. Although Perry and
co-workers’ early modelling assumed the largest attached eddies to have their heads at
the edge of the boundary layer, the later ‘wall-wake’ development considers structures
at this height to be detached. Direct support for this viewpoint is provided by the
recent experiments of Hutchins et al. (2005) and Hambleton et al. (2006). In our
case, initial calculations with attached eddies all the way to the boundary-layer edge
produced poor agreement with the test data sets described in § 4. A reduction in
maximum head height thus seems justified, on both physical and empirical grounds.

Guidance for an appropriate value was taken from the measured narrow-band
convection velocities discussed earlier. Although these are average values, they do
provide some indication of the heights of the structures that contribute to the
wall pressures. The largest observed convection velocities correspond to the mean
boundary-layer velocity at about 0.4δ, and λmax was thus set to place the largest
eddies’ heads at this height. (Note, in passing, that this is around the beginning of
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Figure 8. Example two-dimensional wavenumber spectrum for the wall pressures, calculated
from the scale integral, (3.6). Note that contour level values are relative, not absolute.

the intermittent region, Young 1989, nonetheless it should be regarded as a physically
allowable, rather than essential, choice, and could therefore be varied.) On the same
basis, we neglect potential contributions from detached structures high up in the
boundary layer.

Specific details of the numerical implementation are as follows. Within each
quasi-universal scale range, the integration over scale is carried out with Simpson’s
rule, using bi-linear interpolation to obtain the spectrum values at the required
wavenumber. The resolution of the quadrature is dictated by the number of points
available in the ‘universal’ spectrum. The number of scale ranges outside the
logarithmic region is five, with exponential spacing in z (i.e. the boundaries are
at z/δ =0.1, 0.132, 0.174, 0.230, 0.303 and 0.4). The corresponding values of λ and
L depend on the boundary-layer parameters and the aspect ratio chosen for the
logarithmic region eddies. For the example used previously, with boundary-layer
parameters δ = 3450ν/uτ , B = 7.34, C = 1.231, and with L =

√
2λ in the logarithmic

region, we have λ/δ = 0.1, 0.133, 0.180, 0.253, 0.381 and 0.639 at the scale-range
boundaries. These values are averaged to find λ/δ for the ‘universal’ eddies: 0.116,
0.156, 0.216, 0.317 and 0.510. Finally, the associated values of L/λ are 1.412, 1.391,
1.330, 1.203 and 0.992.

The result of this process, for eddies with rc = 0.05λ and a lower limit
λmin = 27.45ν/uτ , is shown in figure 8. Note that, as the overall multiplying factor
for the scale integral is unknown, the absolute amplitude is arbitrary. The resolution
of the contour levels is twice that used for the individual eddy spectrum of figure 6.
Wavenumbers are non-dimensionalized on the boundary-layer thickness.
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Figure 9. One-dimensional wavenumber spectra calculated from scale integrals with differing
lower limits: (a) streamwise spectrum; (b) spanwise spectrum. Lines: —, uτλmin/ν =25; – –,
uτλmin/ν =50; – . –, uτλmin/ν = 100; · · ·, uτλmin/ν = 200. Vertical scale is logarithmic and spans
four decades.

The overall shape of the spectrum contours is clearly derived from that of the main
peak in the eddy spectra. However, the additional lobes observed with increases in ky

have been removed by the smoothing effect of the scale integral. The broadening of
the peak arises from the stretching of the eddy spectra – functions of kxλ, kyλ – in
the kxδ, kyδ plane.

Given the possible increase in the lower scale-integral limit that may be necessary
to account for wavenumber filtering, it is also worth considering the effect of this
parameter on the calculated spectrum. Figure 9 shows the one-dimensional spectra
for our example case, with uτλmin/ν = 25, 50, 100 and 200. The effect of increasing
λmin is, as one would expect, to attenuate the spectra at higher wavenumbers. For the
largest value, the associated wavenumber (2π/λmin) is about 100/δ, at which point the
streamwise spectrum has been attenuated approximately fourfold and the spanwise
approximately threefold.

Having described the numerical implementation of the attached-eddy surface
pressure model, we are now in a position to compare its predictions with results
found in practice. This is the subject of § 4.

4. Comparison with experimental and computational data
The assessment of our model’s predictions is somewhat complicated by their

‘broadband’ nature; many of the processed results reported in the literature
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concentrate on individual frequency components of the spatial correlation function.
We therefore need to consider either older data sets, or ones where the original time
histories are available. We have identified four such sets.

The first, that of Bull (1967), is due to one of the earliest substantial studies
in the field. Bull used 0.74 mm flush-mounted transducers to measure the pressure
fluctuations under boundary layers with free-stream Mach numbers of 0.3 and 0.5, and
thicknesses ranging from 11 mm to 36 mm. The study is notable for its measurements
of off-axis, in addition to the usual streamwise and spanwise, correlations. However,
doubts as to its accuracy were expressed by Blake (1970), who employed 0.79 mm
pinholes with thicker boundary layers to improve transducer resolution and found
faster decay in correlation with distance. For this reason, we use Blake’s data (Mach
number and boundary-layer thickness ranges 0.06–0.15 and 42–46 mm, respectively)
in preference, where possible.

A more recent experimental data set, for which time histories are available, was
collected by NASA, Boeing and ANTK Tupolev in the course of an extensive set
of flight tests on a Tu-144 aircraft (Rizzi, Rackl & Andrianov 2000). Although most
of the flights were at supersonic speeds, some data at a Mach number of 0.58 are
available. Boundary-layer thicknesses were not measured, but would typically be a
factor of 10 greater than those of Bull and Blake.

Finally, we have also obtained a numerical data set: the large-eddy simulation
(LES) carried out by Singer (1996a). This calculation is for incompressible flow, at a
Reynolds number (based on displacement thickness and free-stream velocity) of 3500.
This places it at the extreme lower end of our test-case range; for comparison, the
Blake, Bull and Tu-144LL values are roughly 2 × 104, 3 × 104 and 3 × 105, respectively.

In the following section, we describe the data sets in more detail and consider how
they may be compared to the model predictions. The comparisons themselves are
split between two sections: the first (§ 4.2) representing on-axis (i.e. streamwise and
spanwise) and the second (§ 4.3) off-axis results. The implications are discussed in
§ 4.4.

4.1. The data sets

4.1.1. Bull’s measurements

Bull’s experiments were performed in a 225 × 150 mm wind tunnel, with up to ten
pressure transducers at spacings ranging from 2.5 mm to 63 mm. In only one case were
off-axis correlations, at 30◦ and 60◦, measured in addition to streamwise and spanwise;
here the free-stream Mach number was 0.3 and the boundary-layer displacement
thickness was 3.8 mm. (Other relevant parameters are given in table 1. From these,
we note that the 0.74 mm transducer diameter corresponds to 162ν/uτ , implying that
contributions from the smallest eddies are filtered out.) Using the measurements for
this case, Bull drew a contour plot of the two-dimensional correlation field, and this
is the subject of our comparison.

On the basis that the dominant length scale of an eddy’s wall-pressure field is
the leg spacing, λ, the scale integral for the wavenumber spectrum was calculated
with a lower limit set by the transducer diameter, i.e. λmin = 162ν/uτ . The predicted
correlation map was then found via inverse Fourier transform. Following a resolution
study, the spectrum was calculated up to kxδ, kyδ =500, with resolution 0.5. After
zero-padding to the next highest power of 2 and carrying out the inverse transform,
correlation values up to rx/δ, ry/δ =6.28 were obtained, at a resolution of 0.00613.
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Set U∞ (m s−1) cf uτ (m s−1) ν (m2 s−1) uτ δ/ν B C

Singer N/A 3.33 × 10−3 N/A N/A 1000 5.59 1.271
Blake 37.9 2.45 × 10−3 1.33 1.65 × 10−5 3450 7.34 1.231
Bull 100 2.14 × 10−3 3.28 1.50 × 10−5 6600 8.12 1.219
Tu-144LL 182 1.33 × 10−3 4.69 2.13 × 10−5 106,000 10.63 1.193

Table 1. Boundary-layer parameters for the comparison data sets.

4.1.2. Blake’s measurements

The wind-tunnel facility used by Blake had a 375 mm square cross-section, and
transducer spacings ranged from 7.9 mm to 127 mm. Only streamwise and spanwise
correlations are reported, for Mach numbers of 0.084 and 0.111. Of these two data
sets, the latter extends to a slightly smaller (dimensionless) streamwise separation, and
is therefore the one we compare against. It has displacement thickness 7.2 mm; other
relevant parameters are given in table 1. The comparison is based on streamwise and
spanwise correlations, with calculated values being obtained via the one-dimensional
analogue of the process described in § 4.1.1. Blake’s transducer diameter is 64ν/uτ , so
λmin was set to this value for the scale integral. The extents and resolutions of the
calculated correlations are unchanged.

4.1.3. The Tu-144LL measurements

As the current model seeks to represent incompressible boundary layers, only the
lowest speed, M = 0.56, data were inspected. Among these, a number of pressure
transducer spectra were found to exhibit extraneous tonal noise. After excluding
transducer groups with any members affected by this problem, we are left with
measurements taken 48.4 m from the nose (window blank 7) at altitude 4970 m (flight
19).

Our outer-region velocity profile requires knowledge of the friction velocity uτ (or,
equivalently, the free-stream velocity and the skin-friction coefficient), the kinematic
viscosity and the boundary-layer thickness. Of this required information, only the
free-stream velocity, U∞ = 182 m s−1, is available directly. The remaining parameters
were estimated from standard expressions (see Appendix C for details).

The relative locations of the pressure measurements are shown in figure 10. Also
indicated is a free stream, U∞, at an angle to the transducer axes, due to the aircraft
incidence and possible local flow distortion around the fuselage. This angle was
estimated from the projected convection velocities implied by the time lag to maximum
correlation between the extreme near-streamwise and near-spanwise transducer pairs.
The result was 7.6◦, which compares very favourably with the 7.7◦ incidence recorded
by the aircraft’s flight-data system. The corresponding overall convection velocity was
calculated at 71 % of free stream, in excellent agreement with expectation.

Finally, we must consider the wavenumber filtering issue. The effective transducer
size, in this context, is given by Rizzi et al. (2000) as 7.72 mm. A complicating factor,
however, is the use of anti-alias (low-pass) filters, set at 11.2 kHz, in the data collection.
The transducer size can only be used to determine the scale cutoff if its filtering effect
is more stringent than the anti-aliasing. The eddies whose contributions would be
attenuated by the latter are identified by linking the peak in the eddy spectrum
(at around kxλ=2) to the convective wavenumber, ω/Uc (where Uc is the mean
convection velocity), at 11.2 kHz. Taking Uc = 0.7U∞, one obtains λ � 3.6 mm, which
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Figure 10. Pressure transducer locations in window blank 7 of the Tu-144LL flight-test
aeroplane. Dimensions are in mm.

is smaller than the effective transducer diameter. The lower limit of the scale integral
was thus set to 7.72 mm, i.e. 1700 ν/uτ .

The comparison between data and predictions is again carried out via correlations.
For the measurements, these were calculated using software supplied with the raw
data. Predicted values were obtained by interpolation from a two-dimensional field
calculated in the same way as described in § 4.1.1, with the same spatial resolution.
Although all the measurements are off-axis to some extent, results from the nominally
streamwise and spanwise separations are considered with the on-axis results from the
other data sets.

4.1.4. Singer’s large-eddy simulation

Singer’s calculation was carried out with a Fourier–Chebyshev pseudo-spectral code,
periodicity being enforced in the spanwise and streamwise directions. (A coordinate
transformation, due to Spalart 1988, was employed to allow the spectral representation
in the latter.) The free-stream velocity and boundary-layer displacement thickness (δ∗)
were chosen as reference variables, and the corresponding Reynolds number was set to
3500. The streamwise and spanwise extents of the computational domain were 44.88δ∗

and 14.28δ∗ respectively, with either 96 × 96 grid points (‘coarse’) or 192 × 128 (‘fine’).
The resulting friction velocity was 0.041U∞, and the mean velocity reached 0.99U∞
at a height 1000ν/uτ , approximately. Taken together with the imposed Reynolds
number, these figures imply that δ/δ∗ =7.0.

Wavenumber spectra were estimated by averaging FFTs of the fine-grid wall-
pressure field, with its (spatial) mean value subtracted. Each field was first Hanning-
windowed and zero-padded to 256 points (streamwise) by 512 (spanwise; this
value was chosen to achieve wavenumber resolution comparable to the streamwise
direction). The resulting spectra are thus defined up to kxδ = 94, kyδ = 197, with
resolutions of 0.74 and 0.77.

The length of available data is 2550 time steps of 0.2δ∗/U∞. However, correlation
between pressure fields at nearby times means that the useful number of FFTs for
averaging is lower; beyond 510, no improvement in convergence was observed for
the two-dimensional spectrum, even though the estimate, as will be seen, clearly
demonstrates the effects of statistical uncertainty. More realizations could, however,
be used for the one-dimensional spectra, as each time step provides multiple samples
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whose correlation decreases with their spacing. In practice, we found that 20
streamwise or spanwise lines per field, corresponding to an average over 10 200 FFTs,
was the useful limit. An improvement in spectral convergence over the 510 FFT
averages was evident for both streamwise and spanwise spectra, but was particularly
marked for the former.

As the spectra calculated from the theoretical model have arbitrary absolute levels,
some form of normalization is also required. The LES spectra were therefore divided
by their integrated values, estimated using trapezoidal quadrature. ‘De-aliasing’ (i.e.
filtering out of high-wavenumber components) in the LES algorithm cuts off the
spectra above kxδ =61.76, kyδ = 126.26; hence, only data for lower wavenumbers
were used in the integrations. The same ranges were employed in the corresponding
normalizations for the theoretical spectra.

To identify the eddies that are attenuated by the de-aliasing, it is necessary to
consider both streamwise and spanwise length scales in the eddy pressure field. Here,
we argue that the former is significantly larger than the latter, which is given by λ.
Thus, the spanwise de-aliasing dominates, and eddies with λ< 0.050δ will have their
contributions eliminated. A lower limit of λ=50ν/uτ was therefore used in the scale
integral.

4.2. On-axis results

Here we present comparisons between one-dimensional data and the predictions of
our model, the latter for three different base-eddy aspect ratios: L = λ, L =21/4λ and
L =

√
2λ (i.e. Λ0 =

√
2, 21/4 and 1). The data sets are arranged in order of increasing

Reynolds number.

4.2.1. Singer’s LES data

As noted previously, the absolute level of our theoretical predictions is arbitrary.
We do, however, have the result that

p2 =
1

2π

∫ ∞

−∞
Sx(kx) dkx, (4.1)

so the dimensionless function Sx(kx)/p2δ can be obtained by normalizing the spectrum
with its integrated value. This quantity, and its spanwise counterpart, are plotted in
figure 11.

As one would expect, the predictions for different aspect ratios converge at higher
wavenumbers, showing excellent agreement with the numerical results for the spanwise
case, and slightly higher levels for the streamwise. At intermediate wavenumbers,
where the spectra exhibit inverse-wavenumber dependence, there is good agreement
with the LES data in both. Here the aspect ratio still has little effect on the predicted
streamwise spectrum, but there are some differences in the spanwise direction, with the
L =21/4λ curve matching best. Finally, the low-wavenumber predictions decrease with
increasing leg length; the spanwise still match the LES data well, but the streamwise
diverge at the very lowest values. Again, the L =21/4λ calculation appears to give the
best overall agreement.

4.2.2. Blake’s wind tunnel data

In this case, the arbitrariness in the absolute level of the theoretical predictions
is straightforwardly dealt with by considering cross-correlations normalized on their
value at zero separation (i.e. p2). Figure 12 compares the predicted and measured
data on this basis. (Note that one experimental data point, at rx = 2.4δ, has been
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Figure 11. One-dimensional wavenumber spectra for the LES test case: (a) streamwise
spectrum; (b) spanwise spectrum. Symbol and lines: × , LES; —, L = λ; – –, L = 21/4λ; –

· –, L =
√

2λ. Inverse-wavenumber dependence would be parallel to the lines marked ‘–1’.

omitted for the sake of improved clarity in the region where the correlation takes
significant values.)

Similar to the spectra, aspect-ratio variations have a weaker effect in the streamwise
direction. When L is increased from λ to

√
2λ, the zero crossing occurs slightly sooner,

as does the recovery from negative values. None of the curves fits the measurements
perfectly, but that for largest L is probably the most successful.

A similar observation applies to the spanwise results. Here the measurements are
straddled by the L =21/4λ and L =

√
2λ curves. Of these two, the latter gives the best

agreement in absolute terms.

4.2.3. The Tu-144LL flight-test data

Figure 13 shows the (nominally) streamwise and spanwise correlations for the
Tupolev 144LL flight test, normalized as previously. Owing to the much greater
boundary-layer thickness attained here, the normalized separations are smaller than
Blake’s, but for consistency the same scales are used.

In general, the comparison between prediction and measurement yields observations
similar to the Blake case: aspect-ratio variations are more significant for spanwise
separations, with no single curve passing perfectly through all data points; however,
good overall agreement in both directions is found for the highest aspect ratio:
L =

√
2λ.
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Figure 12. One-dimensional correlation functions for the Blake test case: (a) streamwise; (b)

spanwise. Symbol and lines: ×, data; —, L = λ; – –, L =21/4λ; – · –, L =
√

2λ.

4.3. Off-axis results

In the light of the on-axis comparisons, it appears that the appropriate value of the
base-eddy aspect ratio varies slightly with Reynolds number, from L/λ= 21/4 for the
LES results to L/λ=

√
2 for the laboratory-scale and flight-test data. This may well

be ascribable to uncertainty in the data and/or the other model parameters, rather
than of physical significance. Nonetheless, here we use that information to set a single
aspect ratio for each prediction. As before, the data sets are presented in order of
increasing Reynolds number.

4.3.1. Singer’s LES data

The predicted two-dimensional spectrum for base eddies with L = 21/4λ is shown
in figure 14(a). It is normalized in the same way, and over the same wavenumber
range, as its one-dimensional counterparts. The corresponding LES spectrum is
plotted alongside in figure 14(b). The absence of complete statistical convergence is
clearly evident in its oscillatory nature. Nonetheless, the overall topology is clear and
compares quite well with that of the predicted spectrum. (Note, in particular, the
greater width of the peak in the spanwise wavenumber direction, and its offset from
the origin along the streamwise wavenumber axis.) An obvious discrepancy is in the
height of the peak; the predicted levels at and around kx = 0 are also markedly lower
than those obtained from the LES data.
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2λ.

4.3.2. Bull’s wind tunnel data

As noted previously, Blake’s wind tunnel data set does not include off-axis
correlations and, in their absence, we turn to the results of Bull (1967), taken at
a comparable Reynolds number. The contours deduced by Bull from his correlation
measurements are reproduced in the left-hand half of figure 15. In the right-hand
half are the corresponding predictions for base-eddy geometry L =

√
2λ. There is

clearly strong qualitative agreement with the experimental data. Equally, though, a
quantitative comparison shows a significant difference: the extent of the predicted
correlation field is notably smaller than that of Bull’s construction.

4.3.3. The Tu-144LL flight-test data

Only four oblique correlations are available from the transducer arrangement of
figure 10, and each of these is at a different angle (48.6◦, 52.7◦, 64.0◦ and 73.7◦).
The values are thus shown together in figure 16, along with the predicted correlation
curves for the four angles.

All the measured correlation values are very similar, and the range of separations
is relatively small, so the experimental data points form a single cluster. The
25◦ angle range available has a rather weak effect on the predicted correlations,
which furthermore converge at around the experimental separation distance. All the
measured values lie below the predictions, but the discrepancies are not great.
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Figure 14. Two-dimensional wavenumber spectra for the LES test case: (a) predicted, with
L = 21/4λ; (b) LES.

4.4. Discussion

Before assessing the implications of our comparisons, it is worth considering what is
expected of the theoretical model. Although the fundamental, horseshoe-like, topology
of the base eddy is well established, the choice of specific geometry is arbitrary, and
here it was based on analytical convenience. The scale integral introduces further
adjustable parameters in the form of its limits. Bearing these points in mind, we
would not seek to apply the model in a strictly numerical, predictive sense. Instead,
its potential value lies in the conceptual insight that it can provide, and its implications
for the physical structure of the wall-pressure field. In this context, it can be viewed
as successful if it reproduces the fundamental features of the field, for reasonable
choices of the base-eddy geometry and the adjustable parameters.

The accuracy of the model’s predictions is most easily judged from the one-
dimensional, on-axis comparisons. This approach, however, presumes that there are
no gross differences in the associated two-dimensional fields that are either missed
(for correlations) or integrated out (for spectra). We first, therefore, note that the off-
axis comparisons confirm that. This is clearest for the LES spectra, where the entire
two-dimensional field is available. However, it is also hard to envisage a realistic
two-dimensional correlation structure that admitted the agreement found for the Tu-
144LL data at the angles available, but exhibited wild differences in between. This
claim is supported by the qualitative topological comparison with the Bull data. (Note,
moreover, that the quantitative discrepancy – a narrower predicted structure – is also
a feature of Witting’s prediction, which is markedly sharper than ours. However,
Blake’s suggestion that this is due to spatial filtering by Bull’s transducers is not
supported, since this effect has been accounted for in our choice of lower scale limit.)
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Turning, then, to the streamwise and spanwise comparisons, we first observe that
the requirement to reproduce the fundamental features of the data sets, given realistic
values of the adjustable parameters, is clearly satisfied by the model. In fact, given the
opportunity to choose an optimum base-eddy aspect ratio, even the detail agreement
is creditable. Although the introduction of another variable parameter could be
regarded as undesirable, it should be noted that the aspect-ratio variation with
Reynolds number is very weak, and its qualitative trend matches that observed by
Head & Bandyopadhyay (1981).

Limitations in the number of spatial separations obtainable experimentally mean
that we are unable to check detail agreement between predicted and measured
correlations over their entire range. Nonetheless, the Tu-144LL and Blake data
combine to cover separations between 0.1δ and 2δ, beyond which correlation levels are,
in any case, very small. Over this range, there are no obvious systematic discrepancies
in the comparisons.

In contrast, despite good overall agreement, there is a region in the LES comparisons
that merits further attention: the low-wavenumber extreme of the streamwise
spectrum. As well as base-eddy aspect ratio, the values here also depend on the upper
limit of the scale integral. One could thus argue for a change in this limit to shift the
peak in the predicted streamwise spectrum closer to that in the LES data. In our view,
however, such a change would be unjustified. There is some physical support for the
value chosen, based on empirically observed narrow-band convection velocities. Fur-
thermore, even if one were prepared to neglect this, a change in the limit would have
significant effects on the overall breadth of the predicted correlations for the Blake
and Tu-144LL data. We regard the consistency of scale-integral upper limit across the
different test cases as a strength of the model, and have thus not allowed it to vary.

Two more likely alternative sources for the discrepancy have been identified. The
first is the finite streamwise extent of the LES domain. This sets the available
wavenumber resolution which, while sufficient to provide a data point below kxδ =1,
may not be enough to prevent contamination from higher, neighbouring points due to
the ‘leakage’ inevitable in spectrum estimation from finite data sets. This hypothesis
cannot, unfortunately, be tested by simulating the same phenomenon theoretically, as
the spectra from different scale eddies all have different absolute resolution, so the
only option is to ensure that it is satisfactory in all cases.

The second lies in the modelling approach, namely the assumption of uncorrelated
eddies. If, as seems increasingly to be accepted, the eddies are actually organized in
streamwise packets, the corresponding large-scale streamwise correlation will lead to
exactly what we observe in figure 14: higher than predicted spectrum levels at low kxδ.

Finally, we note that the spectral results provide support for the predicted existence
of a ‘k−1’ range where the level is proportional to the inverse of wavenumber (see, e.g.
Blake 1986), at least in the streamwise case. The significance of this observation is
probably greatest for the LES data, though. Although the attached-eddy model does
not automatically predict a k−1 region in the wall-pressure spectra (cf. velocity spectra,
where it does, e.g. Nickels et al. 2005), it is probable that one will emerge. To see why,
consider the simplified one-dimensional case where the eddy spectrum is genuinely
universal across the entire scale range, i.e. Pex(kx, y, λ) = (1/2)ρuτΓ P̃ex(kxλ, y/λ), and
is of significant magnitude only over a range of dimensionless wavenumbers, k̃a �
kxλ � k̃b. The scale integral for the streamwise spectrum can now be written as

Sx(kx) ∼
(

1

2
ρu2

τ

)2 ∫ λmax

λmin

F (kxλ) dλ,
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where the function F (k̃) arises from the integral of |P̃ex(kxλ, y/λ)|2 over y/λ. Now,
if the range of scales is sufficient that kxλmin < k̃a and kxλmax > k̃b, then the limits
can be replaced by k̃a/kx and k̃b/kx . Finally, a change of integration variable
gives

Sx(kx) ∼

(
1

2
ρu2

τ

)2

kx

∫ k̃b

k̃a

F (k̃) dk̃,

which exhibits inverse dependence on the wavenumber kx . Like the corresponding
region in the velocity spectra, this feature will become more evident for greater scale
ranges, i.e. increasing Reynolds numbers.

To conclude, then, by the criterion introduced at the beginning of this discussion,
we assert that our implementation of an attached-eddy model for wall pressures is
successful. It is thus worth considering specific contributions that it might make to
the improvement of empirical wall-pressure representations. An unresolved issue
here (see, e.g. Singer 1996b) is the off-axis form of the wavenumber-frequency
spectrum, and this is precisely the kind of information one might extract from
the current model. To do so, however, will require the introduction of time
dependence, a significant extension which we regard as a fruitful avenue for future
work.

5. Conclusions
In this paper, we have applied the attached-eddy model, developed from Townsend’s

ideas by Perry and co-workers, to the modelling of wall-pressure fluctuations beneath
a turbulent boundary layer. As part of this process, we have proposed a novel
distribution of eddy geometries for the defect-law region above the logarithmic layer.
The results have been compared against numerical and experimental data spanning
two decades of Reynolds number. For physically admissible values of the adjustable
parameters, the predictions of the model are in good agreement, both qualitative and
quantitative, with the test data sets. Furthermore, the model is not highly sensitive
to changes in the adjustable parameters. Finally, it gives tentative support for the
view that the ratio of eddy length to breadth increases with boundary-layer Reynolds
number.

We thus conclude that, as in its application to velocity spectra, the attached-
eddy model provides a conceptual framework which enhances our understanding
of the wall-pressure field. More specifically, it has the potential to contribute
to the advancement of empirical representations of this quantity, by providing a
rational basis for the extrapolation of (necessarily limited) experimental data. Further
development is, however, required, because it is the wavenumber-frequency spectrum
of the wall pressures that is required for vibration prediction. This will require an
extension of the attached-eddy model to include time dependence explicitly, and with
greater fidelity than via Taylor’s hypothesis.
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Research Award from the University of Cambridge. The authors would like to thank
Dr. Tim Nickels of the Department of Engineering, University of Cambridge, for
helpful discussions and advice, and Dr. Bart Singer of NASA Langley for providing
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Figure 17. Coordinate system and nomenclature for the Biot–Savart analysis of a straight,
cylindrical, Rankine vortex element.

Appendix A. The Biot–Savart integral for a cylindrical vortex element
The well-known Biot–Savart expression for the velocity field u(x) associated with

a vorticity field ω(x) is

u(x) =
1

4π

∫
ω(x ′) × (x − x ′)

|x − x ′|3 d3x ′.

We consider the contribution to this integral due to the line element of figure 17. The
element has length 2h, and its vorticity is uniformly distributed in a core of radius rc.
The analysis proceeds most straightforwardly in the polar coordinate system shown
in the figure, in terms of which we have x = (r, θ, l), x ′ = (r ′, θ ′, l′) and ω = (Γ/πr2

c )el ,
where Γ is the circulation of the element. The Biot–Savart integral becomes

u(x) =
Γ eθ

4π2r2
c

∫ rc

0

∫ 2π

0

∫ h

−h

r − r ′ cos(θ ′ − θ)[
(l′ − l)2 + D2

]3/2
dl′r ′ dθ ′ dr ′,

where

D2 = r2 + r ′2 − 2rr ′ cos(θ ′ − θ).

The integral over l′ is straightforward, resulting in

u(x) =
Γ eθ

4π2r2
c

∫ rc

0

∫ 2π

0

r − r ′ cos(θ ′ − θ)

D2

[
h − l√

(h − l)2 + D2
+

h + l√
(h + l)2 + D2

]
r ′ dθ ′ dr ′,

(A 1)

but further exact analytical progress is difficult. (The integral over θ ′ yields an
expression involving elliptic integrals of the third kind that does not appear to be
integrable over r ′.) We therefore consider approximations to (A 1).

Our first assumption is that the element is slender, i.e. h/rc � 1. If this condition
holds, two useful approximate results can be derived. The first applies far from
the core, when r � rc (and hence r � r ′ also). On expanding the terms in D2 and
integrating, one obtains

u(x) ∼ Γ eθ

4πr

[
h − l√

(h − l)2 + r2
+

h + l√
(h + l)2 + r2

+ O

(
r2
c

r2

)]
. (A 2)
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Here the leading-order term is, of course, the Biot–Savart result for a line element.
The absence of a term at following order suggests that this expression will be useful
in practice, even for moderate values of r/rc.

The second approximation applies for r  h − l, h + l, i.e. near the element axis
(with the exception of the end regions). Here

h − l√
(h − l)2 + D2

∼ 1 − 1

2

D2

(h − l)2
+ O

(
r4

h4

)
,

with a similar expansion for its counterpart in (A 1). The integrals arising are standard
(see, e.g. Gradshteyn & Rizhik 1994) and yield the result

u(x) ∼ u2D − Γ reθ

8π

[
1

(h − l)2
+

1

(h + l)2
+ O

(
r2

h4

)]
, (A 3)

where u2D is the two-dimensional Rankine vortex velocity field:

u2D =
Γ eθ

2π

r

max(r2, r2
c )

.

We now seek a composite expansion that includes our two asymptotic limits, and
also provides a satisfactory approximation for the velocity at both intermediate
distances and the element’s ends. For this purpose, a natural, but heuristic,
approach would be to combine the two-dimensional and line element results as
follows:

u(x) � u2D

2

[
h − l√

(h − l)2 + r2
+

h + l√
(h + l)2 + r2

]
. (A 4)

This expression clearly includes the large r form in (A 2). Less obviously, it is
asymptotically equivalent to the small r form for r  h − l, h + l (the original
conditions) and r > rc. Inside the core, however, it is not consistent. On the other
hand, with the slight modification

u(x) � u2D

2

[
h − l√

(h − l)2 + max(r2, r2
c )

+
h + l√

(h + l)2 + max(r2, r2
c )

]
, (A 5)

one obtains a form that is consistent with (A 3) throughout the range in which it
holds.

Figure 18 compares the predictions of the two composite expansions with a
numerical evaluation of (A 1), on the symmetry plane of an element with h/rc = 1.
Even for such a debatably slender case, (A 5) exhibits excellent accuracy across the
entire range. Its asymptotic consistency is evident in the core region, where it differs
from (A 4).

The other potentially problematic regions lie around the ends of the element.
Figure 19 shows the predicted and calculated velocity fields at l =0.95h( = 0.95rc).
Here, remarkably, the errors are if anything smaller (and decrease further as the end
is approached).

In the light of the sweeping assumptions inherent in the choice of eddy geometry,
we do not expect errors at the levels found here to be significant, and hence use
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for tangential velocity at l = 0. Lines: —, numerical evaluation of (A 1); – –, heuristic
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Figure 19. Contribution of cylindrical vortex element with h/rc = 1 to Biot–Savart integral
for tangential velocity at l =0.95h. Lines: —, numerical evaluation of (A 1); – –, heuristic
approximation, (A 4); · · ·, asymptotic approximation; see (A 5).

(A 5) for velocity calculations throughout the spatial domain. For the z-velocity
components of the six straight-line elements that make up our eddy (figure 1), it yields,
respectively:

w1(x, y, z) =
Γ

4πa2

λ/2 + y√
2

⎡
⎣ x + z√

(x + z)2 + 2a2
+

√
2L − x − z√√

2L − x − z)2 + 2a2

⎤
⎦ ,



A structure-based model for turbulent-boundary-layer wall pressures 475

with

a2 = max

(
(x − z)2

2
+

(
λ

2
+ y

)2

, r2
c

)
;

w3(x, y, z) =
Γ

4πb2

λ/2 − y√
2

⎡
⎣ x + z√

(x + z)2 + 2b2
+

√
2L − x − z√

(
√

2L − x − z)2 + 2b2

⎤
⎦ ,

with

b2 = max

(
(x − z)2

2
+

(
λ

2
− y

)2

, r2
c

)
;

w2(x, y, z) =
Γ

4πd2

L −
√

2x√
2

[
λ/2 + y√

(λ/2 + y)2 + d2
+

λ/2 − y√
(λ/2 − y)2 + d2

]
,

with

d2 = max

(
(x − z)2

2
+

(
√

2L − x − z)2

2
, r2

c

)
;

w4 = − Γ

4πe2

λ/2 − y√
2

⎡
⎣ x − z√

(x − z)2 + 2e2
+

√
2L − x + z√

(
√

2L − x + z)2 + 2e2

⎤
⎦ ,

with

e2 = max

(
(x + z)2

2
+

(
λ

2
− y

)2

, r2
c

)
;

w6 = − Γ

4πf 2

λ/2 + y√
2

⎡
⎣ x − z√

(x − z)2 + 2f 2
+

√
2L − x + z√

(
√

2L − x + z)2 + 2f 2

⎤
⎦ ,

with

f 2 = max

(
(x + z)2

2
+

(
λ

2
+ y

)2

, r2
c

)
;

w5 = − Γ

4πg2

L −
√

2x√
2

[
λ/2 + y√

(λ/2 + y)2 + g2
+

λ/2 − y√
(λ/2 − y)2 + g2

]
,

with

g2 = max

(
(x + z)2

2
+

(
√

2L − x + z)2

2
, r2

c

)
.

Appendix B. Derivation of the inner velocity profile
Having chosen to specify U = uτz

+ for a finite distance from the wall, we wish
to avoid the discontinuity in gradient that would arise in subsequently jumping to
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Figure 20. The wall region velocity profile. Symbol and lines: +, Coles’ experimental data;
—, current, from numerical integration of (2.9); – –, Bull, from numerical integration of (2.8.)

Bull’s expression; see (2.8). We also note that the latter has a near-linear region for
z+ between 3 and 8. This is well fitted by the line

1

uτ

dU

dz+
= 1 − z+ − 2.8

15.7
.

We therefore seek an overall fit extending to the start of the logarithmic region of the
form

1

uτ

dU

dz+
= 1 − z+ − 2.8

15.7
+ k(z+ − 2.8)n,

valid up to an (as yet) unspecified switch-over point, z+ = z+
1 . Note that the upper

limit on the constant gradient region must now be z+ = 2.8, for continuity.
The values of k, n and z+

1 are found by requiring continuity of value, gradient and
second derivative with the logarithmic velocity profile; see (2.7). These conditions are

z+
1 −

(
z+

1 − 2.8
)2

31.4
+

k

n + 1

(
z+

1 − 2.8
)n+1

=
1

0.41
log z+

1 + 5.0, (B 1)

1 − z+
1 − 2.8

15.7
+ k

(
z+

1 − 2.8
)n

=
1

0.41z+
1

, (B 2)

− 1

15.7
+ nk

(
z+

1 − 2.8
)n−1

= − 1

0.41
(
z+

1

)2
. (B 3)

Of these, (B 3) can be used to substitute for the terms involving k in the first two,
of which (B 2) then becomes a straightforward expression for n in terms of z+

1 . The
solution procedure consists of specifying a set of trial values for z+

1 , finding the
associated ns from the development of (B 2), and then solving the development of
(B 1) graphically for z+

1 . Finally, back-substitution into (B 2) and (B 3) yields the result
quoted in § 2.4, namely k = 4.683 × 10−4, n= 2.262, z+

1 = 27.45.
Bull’s original expression was designed to fit the (discrete) inner region profile data

given by Coles (see Schumann & Corcos 1967). In figure 20, we replot these data,
along with the integrated forms of (2.8) and (2.9). Although Bull’s expression lies
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closer to the Coles data point at z+ = 20, there is little to choose between the two;
given the assumptions involved in specifying our typical eddy, we expect the effect of
the difference to be negligible in this work.

Appendix C. Boundary-layer parameters for the Tu-144LL flight test
The parameters to be estimated are the kinematic viscosity, the boundary-layer

thickness and the skin-friction coefficient. The first of these can be deduced with
good accuracy from the flight measurements of equivalent airspeed (which implicitly
specifies the density) and temperature. The latter is 258.5 K, which yields a dynamic
viscosity μ = 1.63 × 10−5 kgm−1 s−1 via Sutherland’s law (Schlichting 1979). The
equivalent airspeed of 144 m s−1 corresponds to a density ρ = 0.765 kgm−3, giving
ν = 2.13 × 10−5 m2 s−1.

This leaves the skin-friction coefficient and boundary-layer thickness to be
determined. For the latter, Rizzi et al. (2000) quote two empirical corrections to
the well-known 1/7th-power law for the incompressible boundary layer at a distance
x along a flat plate (see, e.g. Young 1989), the Boeing formula

δ = 0.37xRe−1/5
x

[
1 +

(
Rex

6.9 × 107

)2
]0.1

, (C 1)

and the Tupolev formula

δ = 0.37xRe−1/5
x

[
1 + 0.144M2

]0.35
. (C 2)

In these expressions, Rex is the Reynolds number based on x and the free-stream
velocity. For our fuselage location and flight conditions, they yield values of 0.486 m
and 0.344 m, respectively, a considerable difference. Furthermore, no formulae are
available for the skin-friction coefficient.

However, once one accepts the approximation of the fuselage boundary layer by its
flat-plate equivalent, there is a considerable body of work to draw on. Young (1989)
reports that compressibility has little effect on thickness and (at this Mach number)
decreases the skin-friction coefficient to 96.7 % of its incompressible value. He also
recommends, for the Reynolds numbers of interest to us here, the 1/9th-power-law
expressions for the incompressible, flat-plate boundary layer,

cf = 0.0375Re−1/6
x ,

δ = 0.27xRe−1/6
x ,

in preference to their 1/7th-power-law counterparts. On this basis, we obtain
cf =1.33 × 10−3 and δ = 0.479 m, the latter lying between the Boeing and Tupolev
estimates. These are the values used in providing the boundary-layer parameters cited
for this case in table 1.
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